Running Language Interpreters Inside SGX: A Lightweight,
Legacy-Compatible Script Code Hardening Approach

Huibo Wang!, Erick Bauman', Vishal Karande!, Zhigiang Lin?, Yueqiang Cheng?, Yingian Zhang?
IThe University of Texas at Dallas, 2The Ohio State University, and 3Baidu USA

ABSTRACT

Recent advances in trusted execution environments, specifically
with Intel’s introduction of SGX on consumer processors, have
provided unprecedented opportunities to create secure applications
with a small TCB. While a large number of SGX solutions have
been proposed, nearly all of them focus on protecting native
code applications, leaving scripting languages unprotected. To fill
this gap, this paper presents SCRIPTSHIELD, a framework capable
of running legacy script code while simultaneously providing
confidentiality and integrity for scripting code and data. In contrast
to the existing schemes that either require tedious and time-
consuming re-development or result in a large TCB by importing an
entire library OS or container, SCRIPTSHIELD keeps the TCB small
and provides backwards compatibility (i.e., no changes needed to
the scripting code itself). The core idea is to customize the script
interpreter to run inside an SGX enclave and pass scripts to it. We
have implemented ScRIPTSHIELD and tested with three popular
scripting languages: Lua, JavaScript, and Squirrel. Our experimental
results show that SCRIPTSHIELD does not cause noticeable overhead.
The source code of ScRIPTSHIELD has been made publicly available
as an open source project.

CCS CONCEPTS

« Security and privacy — Software security engineering;

KEYWORDS
SGX, Scripting Language, Confidentiality, Integrity

ACM Reference Format:

Huibo Wangl, Erick Bauman’, Vishal Karande?, Zhiqgiang Lin?, Yueqiang
Cheng?, Yingian Zhang?. 2019. Running Language Interpreters Inside SGX:
A Lightweight, Legacy-Compatible Script Code Hardening Approach. In
ACM Asia Conference on Computer and Communications Security (Asi-
aCCS’19), July 9-12, 2019, Auckland, New Zealand. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3321705.3329848

1 INTRODUCTION

Computer programs can often be attacked due to their reliance on
a large trusted computing base (TCB). Typically, an application has
to rely on support from linked libraries, the operating system, and
sometimes a hypervisor. If any system software is compromised,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AsiaCCS’19, July 9-12, 2019, Auckland, New Zealand

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6752-3/19/07...$15.00
https://doi.org/10.1145/3321705.3329848

the execution of the application cannot be trusted. Therefore,
Intel introduced its software guard extensions (SGX) [16], a new
hardware feature that provides secure enclaves in which user level
applications do not have to trust any software outside the enclave,
thereby significantly reducing the attack surface.

From a software development perspective, SGX is merely a set of
new instructions. To really use SGX, it is suggested that application
developers create new applications by using abstractions (e.g.,
APIs) provided by the SGX SDK, partitioning applications into
trusted and untrusted components, and building bridge functions
between enclave and non-enclave code. However, this is tedious,
time consuming, and error prone. By forcing developers to manually
port software to SGX or create new applications from scratch, tons
of legacy software cannot enjoy the benefit provided by SGX.

Today, software is typically developed and executed in two ways:
(1) compiling high level languages into native code to execute
directly; or (2) interpreting source code (or byte code) without
compilation, as is typically done in scripting languages. Many exist-
ing SGX-based applications are in the first category. They are either
built upon a library OS (as in Haven [4] and Graphene [21]) or lever-
age a container (as in SCONE [2]). As a result, they execute the en-
tire application in SGX without any partitioning into trusted and un-
trusted components. However, they will inevitably have a large TCB.
Also, there are no solutions to protect scripting code from malicious
system software while also maintaining backwards compatibility.
Note that while Trust]S [8] explored the direction of using SGX to
protect JavaScript, it does not provide backwards compatibility.

To fill this gap, we present SCRIPTSHIELD, a framework capable of
running legacy scripting code while simultaneously providing con-
fidentiality and integrity of scripting code and data. SCRIPTSHIELD
achieves backwards-compatibility for scripts by treating them as
data streams, and ensures the confidentiality and integrity of scripts
by only executing the script and its interpreter in an enclave. To
deploy ScRrIPTSHIELD, an end user just needs to recompile and
statically link the interpreter for the language they want to use with
our framework (there is no need to modify the source code of the
interpreter); the resulting interpreter will be then executed inside
an enclave, thereby achieving software backwards compatibility.

We have implemented ScRIPTSHIELD and tested with three
popular scripting languages: Lua, JavaScript, and Squirrel, and
demonstrated the practicality of our framework (e.g., having
low runtime overhead, small TCB, and ease of use). Running an
interpreter inside SGX provides many salient benefits: (1) signing it
once, and executing everything; (2) confidentiality and integrity for
all the content of any unmodified script; and (3) a much smaller TCB.

In short, we make the following contributions:

e We present SCRIPTSHIELD, a lightweight legacy code compatible
framework that provides complete confidentiality and integrity
for scripting language protection.

https://doi.org/10.1145/3321705.3329848
https://doi.org/10.1145/3321705.3329848

e We design an application protocol for securely sending scripts
to an enclave, in which scripts are never leaked outside of the
enclave.

e We have implemented a prototype and tested with three popular
scripting languages—Lua, JavaScript, and Squirrel—and demon-
strated the practicality of our framework.

2 BACKGROUND
2.1 Intel SGX

Intel SGX. Intel introduced SGX to provide applications with
the capability to execute code and protect secrets in a secure
enclave [1, 16]. More specifically, SGX provides software developers
direct control over their application’s security without relying on
any underlying system software such as the OS or hypervisor.
This significantly reduces the trusted computing base (TCB) to
the smallest possible footprint (only the code executed inside the
enclave), and prevents various software attacks even when the OS,
BIOS, or hypervisor are compromised. By running trusted code in a
secure enclave, secrets remain protected even when an attacker has
full control of the entire software stack. Also, the SGX hardware
prevents bus snooping, memory tampering, and even cold boot
attacks [10] against memory images in RAM since the enclave
contents are encrypted by a memory encryption engine (MEE). To
prevent any tampering before enclave code is loaded, SGX also
provides hardware based attestation capabilities to measure and
verify valid code and data signatures.

Scripting Languages. Scripting languages are very high level in-
terpreted languages that are often used to connect or extend compo-
nents written in lower level languages [17]. There are multiple types
of scripting languages, from domain specific languages such as OS
shells (e.g., bash), to general purpose languages (e.g., Lua, JavaScript,
Python, or R). While native languages are compiled ahead of time,
scripts are usually compiled at run time, so there is no need to
recompile if the script changes. For example, recompiling a full
game can take minutes to hours, which implies a big productivity
hit. Game logic and configuration are typically contained in script
files. Game designers can easily tweak gameplay by updating these
scripts, but they do not want players to be able to do the same and
change game logic and configuration to their advantage.

Many popular games today have their game logic written in
scripting languages such as Lua. Attacks on these games mainly
have two key steps: first obtaining the Lua script, and then
modifying or replacing the script. There are some ways to retrieve
the original scripts. One is using unluac, which is a tool for reverse
engineering Lua scripts. Another one is to dump the contents
of a script from a few points (e.g., function lua_read, function
lualL_loadbuffer). Therefore, our objective with SCRIPTSHIELD is
to protect scripts like these with integrity and confidentiality, so
that attackers cannot reverse engineer or modify them.

3 OVERVIEW

Objectives. We focused on the following objectives while design-
ing SCRIPTSHIELD:

¢ Language-Level Transparency (Backwards Compatibility).
Given the prevalence of scripting languages, we would like our
framework to be transparent to the languages themselves. That
is, when using SCRIPTSHIELD, there should be no modification
at the scripting language level, allowing all legacy scripts to still
be executed inside SCRIPTSHIELD.

Easier Confidentiality and Integrity Attestation. Our pri-
mary goal is to enable hiding secrets in scripts to defeat reverse
engineering attempts and ensure integrity against tampering.
We would like to minimize the signing and attestation process
and achieve a “sign once, execute many” work flow for developers,
allowing a single signed enclave to execute any arbitrary script.

High Efficiency. While we could use a library OS or containers
to design SCRIPTSHIELD, such approaches would be inefficient
as they need to package a lot of de-privileged kernel code in the
enclave and fill more of the enclave page cache (EPC) with code
and data. Since the EPC is small (only 128MB in SGX v1 [12]),
larger enclaves will suffer performance penalties from paging
EPC pages to and from main memory.

Small TCB. Since we aim to protect the confidentiality and
integrity of scripting languages, we would like to minimize the
attack surface with as small a TCB as possible.

Threat Model and Scope. We focus on the threat model where the
owner of a script does not trust the remote platform it runs on (and
therefore needs to perform attestation), while the platform owner
always trusts the script it is running. Such a model works perfectly
in common daily computing contexts such as cloud computing and
online computer gaming. In fact, we believe SCRIPTSHIELD offers an
alternative model for how to develop and deploy legacy compatible,
secret-preserving programs in these environments.

While several studies have suggested SGX applications are
vulnerable to a variety of side-channel attacks [6, 18, 22], fighting
side channels is not the focus of this work. However, SCRIPTSHIELD
uses up-to-date cryptographic implementations to avoid, to the
best we can, side-channel leakage during secure communication
and script decryption. Moreover, as most demonstrated attacks
exploit memory access patterns of native code execution, scripts are
intuitively less vulnerable to side channels as they are processed as
data by the interpreter within the enclave. Thus, we leave enhancing
ScRIPTSHIELD to defeat side-channel threats as future work.

Challenges and Insights. To achieve our stated objectives with
SGX, we need to split scripting language execution into two compo-
nents: a trusted component executed inside the enclave, and an un-
trusted component outside. Partitioning an application into trusted
and untrusted components can be very time-consuming and tedious.
While prior research from Haven [4] and SCONE [2] has shown that
it is possible to run an entire application inside an enclave without
partitioning, such an approach inevitably leads to a large TCB.
In contrast, most scripting languages are embedded into certain
applications (e.g., Javascript is often executed within a web browser,
and Lua is often embedded in a game program). Therefore, library
OS or container approaches are not suitable for cases in which only a
portion of application code needs to be protected (e.g., game scripts).

A scripting language usually has a self-contained interpreter
that interprets the script. If we are able to execute the entire

Client

Jic)

@ |®

Figure 1: An overview of ScripTSHIELD. Note that @ - ®
denotes the it" step while executing SCRIPTSHIELD.

interpreter inside the enclave, then we do not have to solve the
tedious partitioning problem. However, not all interpreter code
(e.g., system calls) can be executed inside an enclave. Fortunately,
system calls are typically only invoked by libraries, so we can
focus on just modifying the libraries dynamically linked by the
interpreter by statically linking customized, enclave-aware versions
of these libraries into the enclave shared object alongside the
interpreter. Therefore, inspired by SCONE’s design, we can just
add a software shim layer atop the standard libraries. This shim
layer will intercept the execution of the system calls inside the
enclave and transparently redirect their execution to the outside
world through bridge functions supported by SGX SDK.

In our threat model, the client (script provider, such as a game
publisher) does not trust the remote platform (script executor, such
as game players). However, the client still needs to verify that the re-
mote platform is indeed running a secure enclave. Fortunately, Intel
provides remote attestation for enclaves, in which Intel’s attestation
servers can verify that a remote enclave is secure. For the reverse
case, in contrast, the remote platform in our threat model does trust
the client to send non-malicious scripts. We have chosen this model
because in the case of computer games, the scripts are being sent
from the game servers to the player’s machine. The game creator
has created the software running on both platforms, but the game
servers remain in the control of the developers, and the developers
are trusted in our model. However, blindly trusting the client is not
possible, as the remote platform must first verify that it is talking
to a legitimate client. Therefore, the remote platform must have
prior knowledge of the identity of the client. We solve this problem
by hard-coding the public key of the client into the secure enclave.

ScripTSHIELD Overview. An overview of SCRIPTSHIELD is pre-
sented in Figure 1. There are two parties involved in executing a
script: a client who would like to send a script to be executed, and
a remote party out of the client’s control that securely executes
the script. The client could be a cloud user, a game publisher, or a
web service provider. The remote party could be a cloud provider,
a game player, or a web browser. From now on, we will refer to the

party who wants the code protection as the client, and refer to the
party that executes the client’s code as the remote platform.

The client first launches the Initialization component, which
performs remote attestation to make sure the remote platform is
running the intended interpreter. It then generates shared secrets
to establish a secure channel, which will be used to transfer the
encrypted script to the remote party.

On the remote platform side, the Untrusted Module first creates
the secure enclave to execute the interpreter and provides wrappers
for all enclave ecalls and ocalls. After that, the interpreter
executes as a daemon process and waits for client requests. Upon
receiving the initialization request from the client, the remote
platform creates an attestation report for the secure enclave,
forwards the report to be signed by the Quoting Enclave, and
returns the signed attestation report back to the client. If attestation
succeeds, then the client can establish a secure channel with the
secure enclave. A common approach to do so is to use the Diffie-
Hellman key exchange protocol, where the public key of the secure
enclave (generated from random sources after it is launched) is
cryptographically bound to the attested data of the attestation
report, and the public key of the client is hard-coded inside of the
enclave to authenticate the client.

Next, the script is passed via the secure channel to the Script
Decryption component of the remote platform, and is decrypted
inside the enclave. Since no system calls can be executed inside the
enclave, during the execution of the script, SCRIPTSHIELD has to
execute system calls outside the enclave. The control flow passes
through our System Call Shim layer inside the enclave to the outside
ocalls. ScRIPTSHIELD also checks system call return values in order
to protect against Iago attacks.

4 DESIGN
4.1 Client Side Initialization

Remote Attestation. SCRIPTSHIELD requires remote attestation,
which is the mechanism by which a third party can verify that
the desired software is indeed running inside an enclave on
an Intel SGX enabled platform. During remote attestation, the
untrusted component that hosts the enclave asks the enclave to
produce a report called a quote to identify the platform. A quote
containing information about the measurement of code and data,
the product ID, security version number and other attributes is
securely presented to the client for verification. In particular, the
remote attestation in SCRIPTSHIELD takes the following four steps:

o Step-I: Before the client can safely send a script to the remote
server, the client first needs to issue a challenge to the remote
party to ensure that it is indeed running the necessary compo-
nents inside one or more enclaves.

o Step-II: The interpreter’s enclave generates a report in response
to the challenge. The report includes the security version number,
enclave attributes, enclave measurement, software version,
software vendor security version number, and additional user-
provided data. The quoting enclave verifies and signs the report,
and the signed report, called a quote, is sent to the client.

o Step-III: The client sends the signed report (quote) to the Intel
Attestation Service (IAS), and the IAS will verify the quote.

o Step-IV: IAS replies with an atttestation verification report
which confirms or denies the authenticity of the quote and the
enclave it originates from.

Cryptographic Protection. Since the interpreter needs to retrieve
scripts from outside the enclave, to protect the script’s integrity and
confidentiality, SCRIPTSHIELD needs to establish a secure channel
between the client and the remote enclave. More specifically, the
secure channel needs to satisfy the following requirements: (1) the
client needs to verify the code running inside the enclave (i.e., the
identity of the enclave) is exactly the same as expected, (2) the
enclave must authenticate the client, and (3) the script is encrypted
before it is sent to the enclave. As a result, the client only sends
scripts to a trusted enclave, the enclave only accepts scripts from
authenticated clients, and the remote platform never learns the
content of the encrypted scripts.

Intel’s SGX SDK provides a trusted cryptography library (called
sgx-tcrypto) that includes the cryptography functions used by
trusted libraries included in the SDK, such as the sgx-tservice
library. The Diffie-Hellman key exchange method is a widely used
approach to securely exchanging cryptographic keys over a public
channel, allowing two parties with no prior knowledge of each
other to jointly establish a shared secret key over an insecure
channel. However, it is well-known that the Diffie-Hellman protocol
is vulnerable to man-in-the-middle attacks, especially when the OS
in the remote platform is not trusted. To defend against this attack,
a Diffie-Hellman key exchange can be done along with remote
attestation. Because a 64-byte attested data can be associated with
the attestation report, the hash value of the enclave’s public key
can be embedded into the attested data, so that the public key is
cryptographically bound to the enclave’s identity. Moreover, we
hard code the public key of the client in the enclave for the enclave
to authenticate the client in order to prevent an attacker from
impersonating the client. After the client and the enclave have
established a secure communication channel, the client then can
encrypt the script and securely pass it to the enclave.

4.2 Remote Platform Execution

At the remote party (i.e., the SGX machine), we need to execute
scripts sent by the client. As shown in Figure 1, a typical SGX
process involves an Untrusted Module and a Trusted Module.

Untrusted Module. Launching an enclave requires an untrusted
component to set up the necessary environment, provide necessary
libraries (e.g., the SGX runtime library) and bridge functions for
the enclave, and then pass control to the enclave.

In addition to establishing the communication channel for
remote attestation with the client, our Untrusted Module contains
the SGX Runtime Library provided by the SGX SDK and provides
ocalls that can be called by the enclave. The enclave exposes an
ecall interface that can be called from untrusted code. Once remote
attestation succeeds, the client’s script is passed to the enclave and
the untrusted module hands off control flow to the enclave via an
ecall, which will start the execution of the interpreter.

Trusted Module. The interpreter of the corresponding scripting
language is executed inside the SGX enclave. With this, script code
and data are automatically protected. However, the challenge lies

in how to execute the interpreter inside the enclave, considering
the fact that enclaves cannot perform any system calls. Certain
system calls, such as those related to networking and file systems,
are crucial for the correct execution of many scripts.

At first it might appear that we would need to modify the source
code of each interpreter. While possible, this approach is quite
tedious and not scalable if we aim to support many interpreters.
Fortunately, an interpreter is typically dynamically linked to the
standard C libraries. Based on this observation, if we just statically
link the interpreter with a modified version of libc, then we do
not have to modify the interpreter. Therefore, the challenge now
becomes how to modify the way system calls are invoked in libc so
that we can statically link our modified libc with the enclave code
and execute it inside the enclave.

Identifying the points of system call invocation fpriat the
function level in libc would also be tedious. For instance, both
printf and fprintf will invoke the write system call. Directly
examining all of the standard library code, identifying functions
invoking system calls, and adding a bridge function for each of
these functions would require a lot of manual effort. Therefore, we
need a more systematic approach. Fortunately, we found that in
the mus1-1libc implementation of libc, all system calls are invoked
from a central location rather than independently. Therefore, by
directly patching the centralized system call code, there is no need
to examine and patch all 1ibc functions.

More specifically, we just need to add a shim layer atop the
existing system call invocation point in musl-libc. At this shim
layer, based on the system call number we invoke the corresponding
bridge function (the ocall wrappers) and execute the system call
outside of the enclave. The interpreter can now be statically linked
with our modified C library and then executed inside the enclave.

Our Trusted Module also needs to decrypt the script. The
decryption key is passed by the client through the secure channel.
After decryption, the script can be executed. Considering that the
enclave does not trust the OS in our threat model, we cannot rely
on the return values from system calls, as a malicious OS can return
arbitrary values. This is a well-known class of attacks called Iago
attacks [5], in which malicious return values from system calls
could lead to arbitrary execution inside the enclave. Fortunately,
we are not the first to encounter this problem, and there is a known
defense: performing checks on the system call return values inside
the trusted component, as has been done in Haven [4]. For example,
for a read system call, the return value contains the number of
bytes read. However, one of the arguments is count, the number
of bytes to attempt to read. By checking that the return value is not
larger than count, we can verify the return value is in a legal range.
Therefore, we insert such verification code inside the enclave for
each system call in order to defend against Iago attacks.

5 EVALUATION

We have implemented SCRIPTSHIELD!. In this section, we present
the evaluation results. Our performance experiments were executed
on a 14.04.1-Ubuntu system comprised of a 4-core Intel Core i7-
6700 CPU running at 3.40GHz, with 64GiB memory, and 1Gbit/s
Ethernet Connection 1219-LM, running the latest Intel SDK and SGX

The source code is available at https://github.com/osuseclab/scriptshield.

https://github.com/osuseclab/scriptshield

140

B OoNative [0ScripTSHIELD _

5

g 130] .

<

—

£ 120 .

o

=

(5]

8 10) .

<

g

o 100 - N

z] Il
R S B N N

& 0 < 4 oN &
fs S &
w$.§~o Sg‘?\' @5"@? ,;50;7
TSy FUg7T
§ L
§$ S

Figure 2: Percentage overhead of running MuJS benchmarks
in SCRIPTSHIELD normalized against native execution.

driver. We set up two environments for running our benchmarks:
(1) running natively, (2) running under SCRIPTSHIELD. We measured
the execution time by utilizing the OS clock outside of the enclave.
In particular, we first start the clock outside an enclave, execute a
script inside the enclave, and then stop the clock to calculate the
total execution time.

We evaluated SCRIPTSHIELD using three popular cross-platform
scripting languages: Lua, JavaScript (by running the Mu]JS inter-
preter), and Squirrel. We do not need to change any lines of code in
the interpreter when porting it to run in our enclave. What we must
do is (1) add an ecall as an entry point to call the interpreter, (2)
modify the interpreter makefiles to statically link mus1-libc, and
(3) modify the enclave makefiles to integrate the statically linked
interpreter into the enclave and generate the final enclave. so with
the client’s hard coded public key.

Since SCRIPTSHIELD is legacy code compatible, we can directly
run unmodified existing scripting language benchmarks to eval-
uate the performance impact of SCRIPTSHIELD when running the
interpreter inside the enclave. To this end, we have selected the
following benchmark scripts for each of the tested interpreters:

e Lua. Our dataset includes 5 standard benchmarks used in the
Lua language evaluation, as shown in Figure 3.

e Mu]JS. MuJS is a lightweight JavaScript interpreter. There are
no specific benchmarks for the MuJS engine, so we used the
benchmarks from the performance tests in Duk tape. We grouped
these benchmarks into 18 sets, shown in Figure 2. Each set
contains one or more JavaScript benchmarks and tests the
performance of the language feature specified by that group.

o Squirrel. Squirrel is a Lua-like language with a C-like syntax,
typically embedded in a host application. Unlike Lua, which is
written in C, Squirrel is implemented in C++ but exposes a C
API modeled after Lua’s stack-based API. We have 15 sample
benchmarks that we run, as shown in Figure 4. .

Results. Figure 2, Figure 3, and Figure 4 show the percentage
overhead of running the Mu]JS, Lua, and Squirrel benchmarks within
ScrIPTSHIELD compared with native execution. We observe that
the overhead for the Lua benchmarks in Figure 3 is reasonable
except for k-nucleotide. However, this apparently high overhead
is due to the short runtime of the benchmark. Therefore, any fixed

350|008 Native B
03ScrIPTSHIELD

250 - b

200 - -

Normalized Overhead (%)

o il

Figure 3: Percentage overhead of running lua programs in
ScrIpTSHIELD normalized against native execution.

. 500 | | | | | | | | | | | | | | | |
B [0 Native [0 ScripTSHIELD M
= 400 s
i)
<
b
S 300] .
o
T 200 -
N
<
g 100 + N
g
Z
0 O LS R S L S S A G §
4 PSS TALETRRNFEN &
FEFSSSSEETSESEs §
ST FTFITTTF SIFFTFTES
§ & s 9 § 30 &
¥ F S57F & §& °
§ & °¥ 7« o
i g

Figure 4: Percentage overhead of running Squirrel bench-
marks in SCRIPTSHIELD normalized against native execution.

overhead (e.g. entering and exiting the enclave) may dominate the
runtime of the benchmark when running under ScripTSHIELD. This
leads to a high overhead percentage, even though the actual time it
takes to execute is quite small, both natively and in SCRIPTSHIELD.
The overheads for Squirrel scripts in Figure 4 appear high for the
same reason: the benchmarks’ very short runtimes result in higher
overhead. In contrast, the MuJS benchmarks take longer to execute
and have comparatively lower overhead, as shown in Figure 2.

6 LIMITATIONS AND FUTURE WORK

There are still limitations to SCRIPTSHIELD. Currently, we only
support applications written purely in scripting languages. We do
not directly support applications with an interpreter depending on
native components (e.g., a web browser, in which both native code
and scripting code work together). We leave the additional porting
efforts to support the native components to future work.

We only ported three interpreters so far. While we do not have
to modify the interpreter source, we must recompile and statically
link it with our modified mus1l-libc. This process often involves
tedious engineering efforts. A next step is to investigate automatic
compilation dependency resolution and makefile patching, so we
can automatically recompile and statically link with our new library.

Finally, we did not implement bridge functions and ocalls for
every system call. Currently, we support 60 commonly used system

v
Systems Year | ?"bcv.' o | %‘9‘) | o
Haven [4] 2015
Scone [2] 2016
Panoply [20] 2017
Trust]S [8] 2017
Glamdring [15] 2017
Graphene [21] 2017
SCRIPTSHIELD 2019

Table 1: Comparing ScRIPTSHIELD with the related works.

ERRNCENENN

calls (all of which are used in our testing benchmarks). We plan to
add support for the rest of the system calls as future work.

7 RELATED WORK

Protecting Applications with SGX. Since SGX offers strong pro-
tection to applications, SGX has been used to build several security
systems. Haven [4] ports a Windows library OS to SGX to achieve
shielded execution of unmodified legacy applications. Haven has a
large TCB and thus a large attack surface. Panoply [20] provides a
micro-container isolating data and code with SGX. Panoply bridges
the gap between SGX-native abstractions and standard OS abstrac-
tions, but it must change the application code. Scone [2] isolates
docker containers running on a public cloud by using SGX enclaves.
Ryoan [11] protects secret data in a distributed sandbox while it is
processed by services on untrusted platforms, leveraging hardware
enclaves to protect sandbox instances from potentially malicious
platforms. SGX-Elide [3] protects the secrecy of SGX code itself by
enabling the dynamic update of the enclave code. Glamdring [15] au-
tomatically partitions applications into trusted and untrusted parts.

Trust]JS [8] explored the direction of using SGX to protect
JavaScript. While it made a first step of using SGX to protect
scripting languages, their design requires script modifications. Also,
it does not attempt to provide a general execution framework to
execute legacy applications developed in scripting languages. In
contrast, SCRIPTSHIELD aims to protect the confidentiality and
integrity of scripting languages without script modifications.

A comparison of SCRIPTSHIELD with closely related works is
illustrated in Table 1. SCRIPTSHIELD is the first scheme with both
a small TCB and backward compatibility, while all other schemes
either focus on binary applications or lack backward compatibility.

SGX Attacks and Defenses. One of the earliest attacks on SGX is
the controlled-channel attack [23], in which a malicious OS infers
the secrets of SGX applications by observing page fault patterns.
Recently, even higher resolution side channels have been found by
exploiting timer interrupts and cache misses [9]. Other attempts to
attack SGX include using ROP [13] or branch shadowing [14].

To counter controlled-channel attacks, T-SGX [18] leveraged
transactional memory and compiler extensions to instrument
enclave code and detect attack attempts. There are also other
solutions that mask page fault patterns by either determining
memory access behavior [19] or using large pages [7].

8 CONCLUSION

We have presented SCRIPTSHIELD, a backwards compatible ap-
plication execution framework that automatically ensures the
confidentiality and integrity of scripts by executing scripting
language interpreters inside SGX enclaves. We have implemented
a prototype of our framework and tested with Lua, JavaScript and
Squirrel. Our experimental results show that SCRIPTSHIELD does not
introduce noticeable overhead. We also demonstrate the benefits of
running interpreters inside SGX, such as only signing the trusted
enclave once while allowing execution of arbitrary scripts and
transparent protection of the confidentiality and integrity of scripts.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their helpful
comments. This work was supported in part by the NSF grants
1750809, 1718084, 1834213, 1834215, and 1834216.

REFERENCES

[1] “Intel software guard extensions programming reference,” https://software.intel.
com/sites/default/files/managed/48/88/329298-002.pdf, Oct. 2014.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. Stillwell et al., “Scone: Secure linux containers
with intel sgx.” in OSDI, 2016.

[3] E.Bauman, H. Wang, M. Zhang, and Z. Lin, “Sgxelide: enabling enclave code
secrecy via self-modification,” in CGO. ACM, 2018, pp. 75-86.

[4] A.Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, 2015.

[5] S.Checkoway and H. Shacham, “Tago Attacks: Why the System Call API is a Bad
Untrusted RPC Interface,” pp. 253-264.

[6] G.Chen,S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre attacks:
Leaking enclave secrets via speculative execution,” in EuroS&P’19, year=2019.

[7] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “Sgx-lapd: Thwarting controlled side
channel attacks via enclave verifiable page faults,” in RAID’17, 2017.

[8] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. Pietzuch, and R. Kapitza,
“Trustjs: Trusted client-side execution of javascript,” in EuroSec, 2017.

[9] M.Hihnel, W. Cui, and M. Peinado, “High-resolution side channels for untrusted
operating systems,” in USENIX ATC 17, Santa Clara, CA, 2017.

[10] J. A.Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A.]. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember: cold-boot
attacks on encryption keys,” Communications of the ACM, vol. 52, 2009.

[11] T.Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox

for untrusted computation on secret data,” TOCS’18, vol. 35, no. 4, p. 13, 2018.

Intel, “Intel Software Guard Extensions Programming Reference (rev1),” Sep. 2013,

329298-001US.

[13] J.Lee,].Jang,Y.Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and B. B. Kang,
“Hacking in darkness: Return-oriented programming against secure enclaves,” in
USENIX Security 17, 2017.

[14] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring fine-

grained control flow inside sgx enclaves with branch shadowing,” in USENIX

Security 17, 2017.

J. Lind, C. Priebe, D. Muthukumaran, D. OAAZKeeffe, P.-L. Aublin, F. Kelbert,

T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza et al, “Glamdring: Automatic

application partitioning for intel sgx,” in USENIX ATC 17, Santa Clara, CA, 2017.

[16] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagankar, “Innovative instructions and software model for isolated
execution,” in HASP’13, Tel-Aviv, Israel, 2013.

[17] J. K. Ousterhout, “Scripting: Higher level programming for the 21st century,”
Computer, vol. 31, 1998.

[18] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating controlled-channel
attacks against enclave programs,” in NDSS’17, San Diego, CA, 2017.

[19] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page faults from
telling your secrets,” in Asia CCS’16. ACM, 2016, pp. 317-328.

[20] S.Shinde, D.Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux applications
with sgx enclaves,” National University of Singapore, Tech. Rep, 2016.

[21] C. Tsai and D. Porter, “Graphene-sgx,” https://github.com/oscarlab/graphene.

[22] W.Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and C. A.
Gunter, “Leaky cauldron on the dark land: Understanding memory side-channel
hazards in sgx,” in ACM CCS. ACM, 2017, pp. 2421-2434.

[23] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side
channels for untrusted operating systems,” in S&P’15, 2015.

=
)

jpory
&

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/oscarlab/graphene

A ADDITIONAL PERFORMANCE RESULT

When a scripting language interpreter is executed inside a secure
enclave, the script execution incurs the extra cost of running
enclave boundary operations and memory access operations (due to
running inside an MEE). Enclave boundary operations are required
for communication between trusted enclave code and untrusted
code. Such operations include data transfer and control transfer
operations. Enclave boundary transfer operations are necessary
to perform system calls. Similarly, since SGX protects data using
memory encryption, read and write memory access operations
incur additional overhead. Thus, we would like to closely examine
the overhead of these operations by designing corresponding micro
benchmarks.

In particular, we designed two micro benchmarks in Lua to
evaluate SCRIPTSHIELD’s performance. Our first micro benchmark
evaluates system call overhead, which is an important part of
ScrIPTSHIELD’s design, while the other benchmark measures
memory access overhead with memory copy operations. Our
language choice is less important here because there is very little
script code executing; the overhead mostly comes from the system
calls or memory accesses. However, it is important to note that
these benchmarks are still taking place within an interpreter, run
natively and in SCRIPTSHIELD.

System Call Overhead. System calls are used in essentially all
applications, but are not allowed inside SGX enclaves. A key
component in SCRIPTSHIELD is the shim layer atop mus1-libc that
redirects all system calls from the enclave to ocalls that perform
the actual system call outside the enclave. Since the system call
shim is such a significant part of our framework, we would like to
quantify the system call overhead. Clearly, we cannot test all of the
system calls we implemented due to the challenge of designing the
corresponding test cases. Therefore we would like to focus on the
most representative system calls.

Interestingly, we notice readv and writev are the two most
frequently used system calls in many of our daily applications. We
thus design two benchmarks that write to a file and read from a
file, which ultimately invoke the readv and writev system calls,
respectively. We use different input data sizes for this performance
test.

Figure 5 shows the execution time comparison of running
the readv and writev system calls 1,000 times in SCRIPTSHIELD,
normalized against native execution. SCRIPTSHIELD actually has no
noticeable overhead for readv, while overhead is reasonable for
writev.

Memory Access Overhead. SGX uses a memory encryption
engine (MEE) to encrypt the memory for the enclave. Any access
inside the enclave will retrieve the plaintext whereas any access
outside the enclave will only obtain the ciphertext. Naturally, this
comes with a cost. In particular, when an enclave reads data from
and writes data into enclave memory, the requested or updated
pages are accessed by or written into the page cache. For cache
misses or when a page needs to be written into memory, the
Memory Encryption Engine (MEE) has to encrypt and decrypt the
cache line because of the EPC page protection mechanism. When
enclave code memory requirements exceed the EPC size, overhead
will be very large.

E Native
E SCRIPTSHIELD
readv
=
<
Q
g
i
17
>
(2] . e e —
writev
0 20 40 60 80 100 120 140 160 180 200

Normalized Overhead (%)

Figure 5: Percentage overhead of running readv and writev
benchmarks in SCRIPTSHIELD normalized against native exe-
cution.

0o i
200 1 Native B
0o ScripTSHIELD

¥

o

[+

L

= 150| .
%)

>

o

o

Q

N

<

E 100 |
o

Z

N > ;
< <
& & & S
S & A o

Figure 6: Percentage overhead of running memory access
benchmarks in SCRIPTSHIELD normalized against native ex-
ecution.

To measure the memory access overhead inside the enclave,
we leveraged our system call testing and designed another micro
benchmark to both sequentially and randomly read and write
enclave memory because sequential and random memory accesses
have different cache miss frequencies. More specifically, this bench-
mark measures the time for both sequential and random read/write
operations, normalized against a deployment without an enclave.
All operations access a 256K memory region. Figure 6 shows the
percentage overhead of running memory access benchmarks within
ScrIPTSHIELD normalized against native execution. We can see
ScrIpTSHIELD does not significantly impact memory read and write
performance.

B SECURITY APPLICATIONS

Once we have enabled running the legacy scripting code inside
SGX enclaves, we are now able to protect the secrecy and integrity
of this code without modifying any script code. To demonstrate
how to use SCRIPTSHIELD to protect (legacy) scripting languages,
we next present a few security applications.

T P s P s P e — —
9l % - Native 1 0.9] - Native il 0.9 - Native
' - #- SCRIPTSHIELD - ®- SCRIPTSHIELD - ®- SCRIPTSHIELD
5 @ 6000 -
T . =~y 0.7} - g 07} 1%
= (RN Sl B | % . AERRERE N ‘ Sl e . £
g v g . g .- g . Pe--0. | e | 8
TEI 51 7:5; 05— . —g 05 & o ® L2 1T 000
N AN 3
S P 4 &] 5
]
£ RS SR L ST S PR 03 A 03 . £ 2000
- PP R W
b 1 L L y 01} Lkl ud i
| | | | I | | | | I | | I | | Y A A
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 12 14 16
concurrent connections # concurrent connections # concurrent connections Data Size(MB)
(2) (b) (© GV

Figure 7: Average time required to run Xavante benchmarks’ (a) loop script, (b) sample html file and (c) 10 MB text file without
(native) and with ScripTSHIELD. (d) Average throughput measurement for Xavante without (native) and with SCRIPTSHIELD.

Protecting HTTP Servers. When running applications in a cloud
environment, customers would like to protect the confidentiality
and integrity of their code and data. SCRIPTSHIELD’s ability to easily
place an interpreter in an enclave is ideal for securing applications
with an embedded scripting engine. A prominent example of this
kind of application is HTTP servers, many of which offer support
for multiple scripting languages for server-side scripting. Scripts
are more flexible, dynamic, and are easier to use to build web
applications than compiled code. Because of this, many websites
use scripting languages for their web servers.

Lua has been used for server-side scripting on several popular
web sites, including Taobao, and as a templating language on
MediaWiki. Therefore, we decided to demonstrate protecting
lua scripts running on an HTTP server. Xavante is an HTTP
server written entirely in Lua that also offers support for Lua
scripting. Because of this, we chose to use Xavante to demonstrate
SCRIPTSHIELD. Since Xavante is written in Lua, we can protect
more than just server-side scripts; we can place the entire web
server inside the enclave, ensuring its integrity in addition to the
confidentiality and integrity of the scripts it runs.

Xavante has a modular architecture based on URI mapped
handlers. It offers a file handler, a redirect handler and a WSAPI
handler. To use Xavante, we just need to configure it (no code
modification at all) and then execute it in the Lua interpreter we
have ported. We also used a set of benchmarks to evaluate the
overhead while running Xavante with SCRIPTSHIELD.

Specifically, we have three benchmarks: (1) running loop. 1p,
which is a lua script running on the Xavante server that performs
a simple loop and displays the result on a web page, (2) accessing
the default index.html hosted by Xavante, and (3) accessing a
10MB file hosted by Xavante. We use ab, the Apache HTTP
server benchmarking tool, to run these tests. Also, we measure
ScrIpTSHIELD throughput overhead by running ab with varying
amounts of concurrent connections to the server. We show the
results of the three benchmarks in Figure 7. From Figure 7, the
average overhead of loop.1p is around 2 ms, the average overhead
of the sample html file is around 0.5 ms, and the average

overhead of the 10 MB text file is around 0.4 ms. The overhead
of these three benchmarks is mostly due to the short runtime of
the benchmarks. Therefore, any fixed overhead (e.g. entering and

exiting the enclave) may dominate the runtime of the benchmark
when running under ScRIPTSHIELD. This leads to a higher overhead

percentage, even though the actual time it takes to execute is quite
small, both natively and in ScrRIPTSHIELD. Xavante scales well (as
the overhead does not increase with an increase in concurrent
connections), while the whole HTTP server remains protected
within a secure enclave.

Protecting Computer Games. Computer games can often be
reverse engineered. There is often an arms race between game
publishers and game cheaters in protecting the secrecy of certain
game logic. Also, many of today’s computer game engines use
scripting languages such as Lua and Squirrel for game logic. Since
we have enabled running the Lua interpreter in SCRIPTSHIELD,
we can then offer the capability to protect the game logic against
reverse engineering,.

LOVE is a game engine used to make 2D games with Lua, and
has been used for commercial projects. We managed to execute
LOVE inside SCRIPTSHIELD so we are able to run games written in
Lua. Due to the fact that different games require different versions
of LOVE, we just run Mr. Rescue for this proof of concept to
demonstrate how SCRIPTSHIELD could protect the game logic from
malicious attacks. Mr. Rescue is written purely in Lua. Due to the
highly interactive nature of computer games, we did not attempt to
measure its performance overhead, but we did observe there is no
user experience differences when compared using SCRIPTSHIELD or
not.

Since our framework is designed specifically for running scripts,
applications written purely in a scripting language are the most
straightforward to run in our framework. For applications that are
only partly written in a scripting language, extra efforts are needed,
as the interactions between the scripts and native application
components need to be handled.

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX

	3 Overview
	4 Design
	4.1 Client Side Initialization
	4.2 Remote Platform Execution

	5 Evaluation
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References
	A Additional Performance Result
	B Security Applications

